Datos del libro
Traductor: García Sanz, Javier
Autor: Thorne, Kip S.
©2010, Crítica
Colección: Drakontos
ISBN: 9788498921557
Generado con: QualityEbook v0.62
PRESENTACIÓN
E STE libro trata sobre una revolución en nuestra idea del espacio y el tiempo y sus notables consecuencias, algunas de las cuales todavía están siendo desveladas. Es también un relato fascinante, escrito por alguien profundamente involucrado, de las luchas y ocasionales triunfos en una investigación para comprender los que posiblemente son los objetos más misteriosos de nuestro Universo: los agujeros negros.
Se solía considerar como algo obvio que la Tierra era plana: o bien se extendía hasta el infinito o bien tenía algún borde por el que usted podría caer si era lo suficientemente temerario para viajar demasiado lejos. El regreso sana y salva de la expedición de Magallanes y otros viajeros que dieron la vuelta al mundo convencieron finalmente a la gente de que la superficie de la Tierra se curvaba en una esfera, pero se seguía considerando indudable que esta esfera existía en un espacio plano en el sentido de que obedecía a las reglas de la geometría de Euclides. Las líneas paralelas nunca se encontraban. Sin embargo, en 1915 Einstein presentó una teoría que combinaba el espacio y el tiempo en algo llamado espacio-tiempo. Éste no era plano sino que estaba curvado o distorsionado por la materia y la energía que contenía. Debido a que el espacio-tiempo es bastante aproximadamente plano en nuestro entorno, esta curvatura apenas supone alguna diferencia en situaciones normales. Pero las implicaciones para las investigaciones posteriores del Universo fueron más sorprendentes de lo que incluso Einstein pudo haber imaginado. Una de éstas era la posibilidad de que las estrellas pudieran colapsar bajo su propia gravedad hasta que el espacio a su alrededor se curvase tanto que las aislase del resto del Universo. El propio Einstein no creía que semejante colapso pudiera ocurrir, pero otras personas demostraron que era una consecuencia inevitable de su teoría.
La historia de cómo lo hicieron, y de cómo descubrieron las peculiares propiedades de los agujeros negros en el espacio que dejaban atrás, constituye el tema de este libro. Es una historia de descubrimiento científico en acción, escrita por uno de los participantes, algo parecido a lo que fue La doble hélice de James Watson respecto al descubrimiento de la estructura del ADN, que llevó a la comprensión del código genético. Pero a diferencia del caso del ADN, no se disponía de resultados experimentales que guiaran a los investigadores.
En lugar de ello, la teoría de los agujeros negros fue desarrollada antes de que hubiera cualquier indicio procedente de observaciones de que realmente existen. No conozco ningún otro ejemplo en la ciencia donde se haya llevado a cabo una extrapolación tan satisfactoria únicamente sobre la base del pensamiento. Demuestra el notable poder y profundidad de la teoría de Einstein. Queda aún mucho por conocer, cosas como qué es lo que sucede con los objetos y la información que caen en un agujero negro. ¿Reemergen en algún otro lugar del Universo, o en otro universo? ¿Y pueden distorsionar tanto el espacio y el tiempo que sea posible viajar hacia atrás en el tiempo? Estas cuestiones son parte de nuestra búsqueda para comprender el Universo. Quizá alguien regresará del futuro y nos dirá las respuestas.
STEPHEN HAWKING
INTRODUCCIÓN
E STE libro se basa en una combinación de principios físicos firmemente establecidos y de especulación muy imaginativa con la que el autor intenta ir más allá de lo que actualmente se conoce con solidez y entrar en una parte del mundo físico que no tiene contrapartida conocida en nuestra vida cotidiana en la Tierra. Su objetivo es, entre otras cosas, el examen del exterior tanto como del interior de un agujero negro —un cuerpo estelar tan masivo y concentrado que su campo gravitatorio impide que las partículas materiales y la luz escapen por las vías que son comunes en una estrella como nuestro Sol. Las descripciones que se dan de los sucesos que experimentaría un observador que se aproximase a dicho agujero negro desde fuera están basadas en las predicciones de la teoría de la relatividad general en un dominio de «gravedad-fuerte» donde nunca ha sido directamente verificada. Las especulaciones que van más allá de esto y tratan de la región interna de lo que se denomina el «horizonte» del agujero negro se basan en un tipo especial de valor, en realidad de osadía, que Thorne y sus colaboradores internacionales tienen en abundancia y comparten con gusto. Uno se acuerda de la afirmación de un distinguido físico: «Los cosmólogos normalmente se equivocan, pero raramente dudan». Habría que leer este libro con dos objetivos: aprender algunos hechos fidedignos concernientes a las extrañas pero reales características de nuestro Universo físico, y disfrutar con la especulación autorizada acerca de lo que podría haber más allá de lo que sabemos con razonable certeza.
Como prefacio al trabajo, habría que decir que la teoría de la relatividad general de Einstein, una de las más grandes creaciones de la ciencia especulativa, fue formulada precisamente hace más de tres cuartos de siglo. Sus éxitos a mediados de los años veinte, que proporcionaron una explicación de las desviaciones del movimiento del planeta Mercurio respecto a las predicciones de la teoría de la gravitación newtoniana, y más tarde una explicación del desplazamiento hacia el rojo de las nebulosas descubiertas por Hubble y sus colegas en el Observatorio del Monte Wilson, fueron seguidos de un periodo de relativa quietud mientras la comunidad de los físicos orientaba más su atención a la explotación de la mecánica cuántica, tanto como a la física nuclear, la física de partículas de altas energías y los avances en la cosmología observacional.
El concepto de agujeros negros había sido propuesto de forma especulativa poco después del descubrimiento de la teoría de la gravitación de Newton. Con los cambios adecuados, se encontró que tenían un lugar natural en la teoría de la relatividad si se estaba dispuesto a extrapolar soluciones de las ecuaciones básicas hasta campos gravitatorios muy intensos —un procedimiento que Einstein consideró con escepticismo en esa época. No obstante, utilizando la teoría, Chandrasekhar había señalado en los años treinta que, de acuerdo con ella, las estrellas que tienen una masa por encima de cierto valor crítico, el llamado límite de Chandrasekhar, deberían colapsar y convertirse en lo que ahora llamamos agujeros negros cuando han agotado las fuentes nucleares de energía responsable de sus altas temperaturas. Algo más avanzados los años treinta, este trabajo fue ampliado por Zwicky y por Oppenheimer y sus colegas, quienes demostraron que existe un rango de masas estelares dentro del cual cabría esperar que la estrella colapse más bien hacia un estado en el que esté constituida por neutrones densamente empaquetados, la llamada estrella de neutrones. En cualquier caso, la implosión final de la estrella cuando se agota su energía nuclear debería estar acompañada por un inmenso derramamiento de energía en un tiempo relativamente corto, un derramamiento que debe estar asociado con el brillo de las supernovas vistas ocasionalmente tanto en nuestra propia galaxia como en nebulosas más distantes.
La segunda guerra mundial interrumpió este trabajo. Sin embargo, en los años cincuenta y sesenta la comunidad científica volvió a él con renovado interés y vigor, tanto en la frontera experimental como en la teórica. Se hicieron tres avances principales. Primero, los conocimientos obtenidos en la investigación en física nuclear y de altas energías encontraron un lugar natural en la teoría cosmológica, proporcionando apoyo para la que comúnmente se conoce como teoría del «big bang» de la formación de nuestro Universo. Muchas líneas de evidencia apoyan ahora la idea de que el Universo que conocemos tuvo su origen como resultado de la explosión de una pequeña sopa primordial hecha de partículas calientes y densamente concentradas, comúnmente llamada una bola de fuego. El suceso primario ocurrió hace entre diez y veinte mil millones de años. Quizá el apoyo más espectacular para la hipótesis fue el descubrimiento de los restos degradados de las ondas luminosas que acompañaban a una fase posterior de la explosión inicial.