Introducción
Este libro, a diferencia de la mayoría de los libros de matemáticas, trata de los matemáticos, de su extraordinaria pasión por las matemáticas y de toda la complejidad de su existencia, y hace hincapié en los aspectos social y emocional de la vida matemática.
En las grandes y famosas obras de Euclides y Newton encontramos axiomas y teoremas. Las matemáticas parecen hablar por sí mismas. No hablan en primera persona, no se dirigen a una segunda persona: «ésta es la verdad, aquí está la demostración, no hace falta decir nada más». Si nos remontamos a los escritos de Platón y Descartes, vemos que el pensamiento matemático siempre ha sido visto como razón pura, una facultad perfecta y eterna y que los pensamientos, los sentimientos y las preocupaciones del matemático no se tratan.
Sin embargo, no es necesaria una reflexión muy profunda para darnos cuenta de que esta perfección es una creación humana. Las matemáticas son un artefacto creado por criaturas pensantes de carne y hueso, algo que, por supuesto, siempre han sabido los poetas, novelistas y dramaturgos. Los matemáticos, igual que todo el mundo, piensan social y emocionalmente según las categorías de su tiempo, lugar y cultura. A cualquier gran tarea que emprendamos, como por ejemplo la estructuración del conocimiento matemático, le aplicamos toda nuestra humanidad. Nuestro trabajo comprende, no sólo el razonamiento, sino además el gozo del descubrimiento, la lucha contra la incertidumbre, y muchas otras emociones. También las realidades sociales, la guerra, la opresión política, el sexismo y el racismo le han dado forma a este trabajo, puesto que han afectado a la sociedad y a las matemáticas en épocas diferentes.
Hoy en día, la relación entre pensamiento y emoción es un campo activo e importante de la investigación científica. Recientemente, el neurocientífico Antonio Damasio y un colaborador suyo escribieron que
la biología moderna descubre que los humanos son fundamentalmente criaturas emocionales y sociales. Aun así, los que trabajamos en el campo de la educación solemos equivocarnos al considerar que las habilidades cognitivas superiores que se enseñan en las escuelas, entre ellas el razonamiento, la toma de decisiones y los procesos relacionados con el lenguaje, la lectura y las matemáticas, no funcionan como sistemas racionales e incorpóreos, de algún modo influenciados por las emociones y el cuerpo, aunque separados de ellos... existen procesos emocionales ocultos que subyacen a la toma de decisiones y al aprendizaje en un mundo real aparentemente racional.
Aunque la toma de decisiones puramente racional sea posible en situaciones muy estructuradas, Damasio y su colaborador indican que es necesario potenciar el pensamiento emocional para adquirir y aprovechar «estas habilidades y conocimientos fuera del contexto estructurado de las escuelas y del laboratorio».
Qué duda cabe, la experiencia matemática avanza entre los polos gemelos de la exaltación y de la desesperación. Si bien es cierto que los principiantes son quienes mejor conocen la desesperación, y que la exaltación está más asociada a los grandes descubridores, es cierto también que estas emociones opuestas permanecen a la espera y ocultas durante cualquier dificultad matemática y a cualquier nivel. Los vínculos emocionales profundos entre la experiencia matemática en la primera infancia, en la madurez y en la edad avanzada constituyen uno de los principales temas de este libro.
Para desvelar estos diferentes aspectos de la vida matemática hemos leído muchas biografías y autobiografías. Citamos una gran cantidad de anécdotas entrañables de la vida de matemáticos que disfrutaron de los caprichos y peculiaridades de vivir con los números y la abstracción y que se rieron de todo ello. Muy a menudo dejamos que hablen los matemáticos famosos.
Uno de nuestros principales objetivos consiste en superar algunas imágenes estereotipadas y distorsionadas de esta disciplina y de sus practicantes.
En primer lugar, tenemos el mito de que los matemáticos son diferentes de otras personas y de que carecen de complejidad emocional.
Existe la creencia generalizada de que para comprender un razonamiento abstracto complejo, un investigador debe excluir de su pensamiento las emociones. Nuestros primeros cuatro capítulos refutan dicha creencia. El matemático, igual que cualquier otra persona, tiene una vida emocional que se sostiene en el cariño recibido en la infancia y en la juventud, y en el compañerismo y el apoyo mutuo en años posteriores.
Lograr el equilibrio de la propia vida emocional constituye un desafío para cualquiera, y es un desafío especialmente duro para aquellos que trabajan en las matemáticas, donde la búsqueda de la certidumbre sin tener un camino identificado con claridad puede conducir en ocasiones a la desesperación. La absorción de los matemáticos en su mundo aparte y especial de pensamiento resulta fundamental para sus logros y para que disfruten haciendo matemáticas. Sin embargo, cualquier trabajo creativo exige apoyo. El matemático, inmerso en un mundo mental cuya comprensión queda muy lejos del alcance de las personas más cercanas a él, corre el riesgo de quedar psicológicamente aislado. Explicaremos la historia de algunos matemáticos para quienes este tipo de aislamiento se convirtió en tan extremo que llegó a abrumar su existencia. También hablamos de otros a quienes la realidad y la belleza de las matemáticas les transportaron a un paraíso emocional que les protegió de las persecuciones y de los trágicos efectos de la guerra. El denominador común es el amor y el odio por las matemáticas.
Empezamos el primer capítulo con una pregunta, ¿cómo empieza un niño a convertirse en matemático? Exploramos la euforia del descubrimiento y la capacidad de compromiso que pueden llegar a tener algunos jóvenes. Escuchamos a los jóvenes participantes en las olimpiadas matemáticas internacionales, y también a sus padres. Seguimos a los jóvenes matemáticos a través de sus años escolares y universitarios. Entre las emociones que acompañan la actividad matemática, encontramos afinidades y dudas, frustración y euforia, camaradería y rivalidad, y amistad y celos.
La cultura de las matemáticas es el tema del segundo capítulo. La socialización en el seno de una comunidad implica compartir valores, enfoques cognitivos y creencias y prácticas sociales. También implica modos de gestionar las tensiones internas que pueden ser la causa de la ruptura de vínculos humanos y profesionales muy necesarios. Informamos de tres episodios recientes en la historia de las matemáticas que fueron titulares de noticias: la demostración del último teorema de Fermat; el reconocimiento del grupo de fenómenos en dinámica conocidos como «caos»; y la demostración del programa de Thurston en topología tetradimensional, que incluye la conjetura de Poincaré. En todo lo anterior participaron dos grandes geómetras, Grisha Perelman y S.-T. Yau, y nos demuestra el precio a pagar por el compromiso firme y la ambivalencia del matemático con respecto a la fama. También damos cuenta de las dificultades a las que tuvo que enfrentarse la catedrática de la Universidad de California Jenny Harrison. (Al final de este libro adjuntamos un directorio biográfico de matemáticos e investigadores.)
En el capítulo 3, presentamos historias donde sus protagonistas encuentran consuelo en su disciplina como una forma de evadirse de la opresión y del encarcelamiento. Empezamos con Jean-Victor Poncelet, un oficial capturado por el derrotado ejército de Napoleón que realizó grandes descubrimientos en geometría durante el tiempo en que estuvo prisionero en Siberia, e incluimos también a José Luis Massera, de Uruguay, que se dedicó a darles clase a sus compañeros prisioneros en la cárcel, proporcionándoles esperanza y la determinación de sobrevivir.