INTRODUCCIÓN
Por el año 1965, esa respetable revista que es Science Digest inició una nueva sección titulada «Please Explain» [«Por favor, explique»]. El propósito de esta sección era seleccionar algunas de las preguntas formuladas por los lectores y contestarlas en unas 500 palabras.
La revista me preguntó si estaba dispuesto a abordar de vez en cuando una pregunta a cambio de una cantidad razonable de dinero. «Bien», contesté con ciertas reservas, «pero siempre que sea de vez en cuando».
Tuve que suponerlo. Mi colaboración, que en principio iba a ser esporádica, adquirió carácter mensual, y la sección «Please Explain» pasó a ser «Isaac Asimov Explains» [«I. A. explica»]. (Para evitar la posible trampa de mi archiconocida modestia diré que el cambio se hizo sin consultarme). Cuando quise darme cuenta, llevaba ya colaborando más de ocho años y había acumulado un centenar de preguntas y respuestas.
¿Y quién podría resistir la tentación de reunir esos ensayos y hacer con ellos un libro? ¡Yo, desde luego, no! ¡Ni tampoco Houghton Mifflin!
Como las respuestas que tengo que dar dependen de las preguntas que formulan los lectores, los ensayos no se reparten uniformemente por todo el campo de la ciencia. Por alguna razón, los lectores se hallan profundamente interesados por la física teórica, siendo especialmente numerosas las preguntas acerca de la velocidad de la luz y de las partículas subatómicas.
De ahí que exista cierta duplicidad entre las respuestas, así como algunas omisiones flagrantes.
Ambas cosas tienen sus ventajas. Las duplicidades provienen, en parte, de que he intentado hacer las respuestas lo más completas posible. El lector puede consultar por tanto cualquier cuestión que se le venga a la imaginación y leer el libro en el orden que le plazca.
Y en cuanto a las omisiones… ¿qué hay de malo en dejar que susciten una sana curiosidad? Si es suficientemente sana, envíe su propia pregunta a Science Digest. Si tengo ocasión (y sé lo suficiente) la contestaré, y de aquí a ocho años podría haber material bastante para publicar un libro titulado «Isaac Asimov sigue explicando».
50. Las partículas que se mueven más deprisa que la luz emiten radiación luminosa. ¿Cómo es posible, si no hay nada que se propague más deprisa que la luz?
A menudo se oye decir que las partículas no pueden moverse «más deprisa que la luz» y que la «velocidad de la luz» es el límite último de velocidad.
Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes según el medio en que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.793 kilómetros por segundo. Éste es el límite último de velocidades.
Por consiguiente, para ser precisos habría que decir que las partículas no pueden moverse «más deprisa que la velocidad de la luz en el vacío».
Cuando la luz se mueve a través de un medio transparente, siempre lo hace más despacio que en el vacío, y en algunos casos mucho más despacio. Cuanto más despacio se mueva en un medio dado, tanto mayor es el ángulo con que se dobla (refracta) al entrar en ese medio desde el vacío y con un ángulo oblicuo. La magnitud de ese doblamiento viene definida por lo que se denomina el «índice de refracción».
Si dividimos la velocidad de la luz en el vacío por el índice de refracción de un medio dado, lo que obtenemos es la velocidad de la luz en dicho medio. El índice de refracción del aire, a la presión y temperatura normales, es aproximadamente 1,003, de modo que la velocidad de la luz en el aire es 299.793 dividido por 1,0003 ó 299.703 kilómetros por segundo. Es decir, 90 kilómetros por segundo menos que la velocidad de la luz en el vacío.
El índice de refracción del agua es 1,33, del vidrio corriente 1,7 y del diamante 2,42. Esto significa que la luz se mueve a 225.408 kilómetros por segundo por el agua, a 176.349 kilómetros por segundo por el vidrio y a sólo 123.881 kilómetros por segundo por el diamante.
Las partículas no pueden moverse a más de 299.793 kilómetros por segundo, pero desde luego sí a 257.500 kilómetros por segundo, pongamos por caso, incluso en el agua. En ese momento están moviéndose por el agua a una velocidad mayor que la de la luz en el agua. Es más, las partículas pueden moverse más deprisa que la luz en cualquier medio excepto el vacío.
Las partículas que se mueven más deprisa que la luz en un determinado medio distinto del vacío emiten una luz azul que van dejando tras de sí como si fuese una cola. El ángulo que forman los lados de esta cola con la dirección de la partícula depende de la diferencia entre la velocidad de la partícula y la de la luz en ese medio.
El primero que observó esta luz azul emitida por las partículas más veloces que la luz fue un físico ruso llamado Pavel A. Cerenkov, que anunció el fenómeno en 1934. Esa luz se denomina, por tanto, «radiación de Cerenkov». En 1937, otros dos físicos rusos, Eya M. Frank e Igor Y. Tamm, explicaron la existencia de esta luz, relacionándola con las velocidades relativas de la partícula y de la luz en el medio de que se tratara. Como resultado de ello, los tres recibieron en 1958 el Premio Nobel de Física.
Para detectar dicha radiación y medir su intensidad y la dirección con que se emite se han diseñado instrumentos especiales, llamados «contadores de Cerenkov».
Los contadores de Cerenkov son muy útiles porque sólo son activados por partículas muy rápidas y porque el ángulo de emisión de la luz permite calcular fácilmente su velocidad. Los rayos cósmicos muy energéticos se mueven a una velocidad tan próxima a la de la luz en el vacío, que producen radiación de Cerenkov incluso en el aire.
Los taquiones, partículas hipotéticas que sólo se pueden mover más de prisa que la luz en el vacío, dejarían un brevísimo relámpago de radiación de Cerenkov incluso en el vacío. Las esperanzas que tienen los físicos de probar la existencia real de los taquiones se cifran en detectar precisamente esa radiación de Cerenkov (suponiendo que existan, claro está).
51. Si no hay nada más rápido que la luz, ¿qué son los taquiones, que al parecer se mueven más deprisa que ella?
La teoría especial de la relatividad de Einstein dice que es imposible hacer que ningún objeto de nuestro universo se mueva a una velocidad mayor que la de la luz en el vacío. Haría falta una cantidad infinita de energía para comunicarle una velocidad igual a la de luz, y la cantidad «plus quam infinita» necesaria para pasar de ese punto sería impensable.
Pero supongamos que un objeto estuviese moviéndose ya más deprisa que la luz.
La luz se propaga a 299.793 kilómetros por segundo. Pero, ¿qué ocurriría si un objeto de un kilogramo de peso y de un centímetro de longitud se estuviera moviendo a 423.971 kilómetros por segundo? Utilizando las ecuaciones de Einstein comprobamos que el objeto tendría entonces una masa de – kilogramos y una longitud de + centímetros.
O dicho con otras palabras: cualquier objeto que se mueva más deprisa que la luz tendría que tener una masa y una longitud expresadas en lo que los matemáticos llaman «números imaginarios» (véase pregunta 6). Y como no conocemos ninguna manera de visualizar masas ni longitudes expresadas en números imaginarios, lo inmediato es suponer que tales cosas, al ser impensables, no existen.
Pero en el año 1967, Gerald Feinberg, de la Universidad Columbia, se preguntó si era justo proceder así. (Feinberg no fue el primero que sugirió la partícula; el mérito es de O. M. Bilaniuk y E. C. G. Sudarshan. Pero fue Feinberg quien divulgó la idea). Pudiera ser, se dijo, que una masa y una longitud «imaginarias» fuesen simplemente un modo de describir un objeto con gravedad negativa (pongamos por caso): un objeto que, dentro de nuestro universo, repele a la materia en lugar de atraerla gravitatoriamente.