Neuromatemáticas
El lenguaje eléctrico del cerebro
José María Almira y Moisés Aguilar-Domingo
Colección ¿Qué sabemos de?
Catálogo general de publicaciones oficiales
http://publicacionesoficiales.boe.es
Diseño gráfico de cubierta: Carlos Del Giudice
Fotografía de cubierta: © iStock/Thinkstock
© José María Almira y Moisés Aguilar-Domingo, 2016
© CSIC, 2016
© Los Libros de la Catarata, 2016
Fuencarral, 70
28004 Madrid
Tel. 91 532 20 77
Fax. 91 532 43 34
www.catarata.org
isbn (csic): 978-84-00-10115-2
isbn electrónico (csic): 978-84-00-10116-9
isbn (catarata): 978-84-9097-219-9
isbn electrónico (catarata): 978-84-9097-220-5
nipo: 723-16-254-5
nipo electrónico: 723-16-255-0
depósito legal: M-33.566-2016
ibic: PDZ/PSAN
este libro ha sido editado para ser distribuido. la intención de los editores es que sea utilizado lo más ampliamente posible, que sean adquiridos originales para permitir la edición de otros nuevos y que, de reproducir partes, se haga constar el título y la autoría.
CAPÍTULO 1
Electroencefalograma y potenciales evocados: el lenguaje eléctrico del cerebro
Qué es un electroencefalograma, cómo se graba y para qué sirve
El cerebro es, sin duda, el sistema más complejo al que podemos enfrentarnos. También es probablemente aquel cuyo conocimiento supone el reto más importante que podamos afrontar. Somos nuestro cerebro. En tiempos remotos esto no estaba claro y numerosas teorías colocaban el centro de nuestro ser, el alma, la conciencia, el pensamiento, en otras partes del cuerpo, como el corazón, el hígado o los intestinos. Aristóteles, padre de la lógica, pensaba que el cerebro no participa para nada en nuestro “pensamiento”. Se convenció de ello tras realizar algunos experimentos con animales, comprobando que este órgano es por sí mismo insensible (realizó cortes sin que observara respuesta dolorosa por parte de los animales sometidos a dicha experiencia). Como consecuencia de esto, propuso que el corazón es el órgano de las sensaciones. Posteriormente, Hipócrates, en sus estudios sobre la epilepsia (enfermedad a la que se adjudicaba un carácter sagrado), se basó en las observaciones anatómicas de Acmeón y sus discípulos, que habían establecido la existencia de nervios que, con continuidad, parten del cerebro y alcanzan todas las partes del cuerpo, para concluir que este mal, que provoca convulsiones en diferentes partes del cuerpo, tiene en realidad su origen en un mal funcionamiento del cerebro. Además, afirmó que los ojos, manos, pies, lengua y oídos se comportan de acuerdo a ciertas instrucciones que reciben del cerebro, y que este es el centro de nuestro entendimiento. Sin embargo, hubo que esperar a Claudio Galeno para que se aportaran suficientes pruebas de que, en efecto, el cerebro y la médula espinal (es decir, lo que actualmente denominamos sistema nervioso central) tienen un papel fundamental en nuestra conducta.
Evidentemente, existen numerosos puntos de vista que nos permiten acercarnos a una mejor comprensión del cerebro. Podemos, por ejemplo, estudiar los procesos bioquímicos, así como los procesos bioeléctricos que tienen lugar en dicho órgano y que son consustanciales a su correcto funcionamiento. Podemos centrarnos en aspectos fisiológicos y/o anatómicos y relacionar las distintas regiones que componen el encéfalo con diversas funciones neurológicas. Podemos centrar nuestra atención en las unidades mínimas que componen el cerebro: las neuronas y las células gliales, y estudiar su comportamiento y su estructura. Podemos, por supuesto, plantearnos el estudio de las redes neuronales, intentando explicar cómo se activan y qué efecto tienen para generar las distintas actividades que se adjudican hoy en día al cerebro. Podemos abstraernos de todo lo anterior e intentar explicar, desde un punto de vista más teórico, los aspectos básicos del cerebro como máquina, etc. Ninguno de estos enfoques, por sí mismo, bastará para alcanzar un entendimiento completo del cerebro. Cualquiera de ellos basta para llenar una vida dedicada por completo al estudio.
En este breve texto introducimos algunos aspectos básicos relacionados con el lenguaje eléctrico del cerebro, tal como se percibe desde el exterior del cuero cabelludo. Dicha actividad eléctrica, que se produce con amplitud de microvoltios, se recoge mediante el uso de electrodos repartidos homogéneamente en la cabeza, dando lugar a los llamados electroencefalogramas (EEG). Es decir, un EEG está formado por un conjunto relativamente pequeño de señales eléctricas, medidas en microvoltios, que han sido grabadas por diferentes sensores que se colocan en el exterior del cuero cabelludo. Se pueden grabar electroencefalogramas con sensores que tengan contacto directo con la piel o incluso con el encéfalo, tanto a nivel superficial como profundo. Sin embargo, en este texto nos hemos centrado exclusivamente en el caso en el que la grabación se realiza desde el cuero cabelludo. El número de electrodos utilizados puede variar, desde la decena hasta el orden de trescientos.
Los primeros EEG humanos fuer on grabados en Jena, Alemania, por H. Berger en la década de 1920. Para tomar sus medidas, utilizó un galvanómetro de cuerda, que es un instrumento poco preciso cuando las intensidades de corriente eléctrica son muy pequeñas. Afortunadamente, pronto surgió el tubo de rayos catódicos, que permite realizar amplificaciones importantes, sin dar lugar a distorsiones y, por tanto, es un instrumento mucho más apropiado para medir electroencefalogramas. Evidentemente, el paso del tiempo ha ido aportando numerosas mejoras tecnológicas y en la actualidad existen electrodos que realizan su función con enorme precisión y eficiencia. En particular, es necesario destacar aquí la elevada resolución temporal que tienen estos apara tos.
La actividad recogida por un electrodo cambia de forma sensible cuando modificamos su posición. Esto es natural, pues aunque el electrodo recibe información que proviene en realidad de numerosas partes del encéfalo, la actividad que se genere en la región inmediatamente más próxima al mismo tendrá un efecto predominante. Si estamos en medio de una fiesta con mucha gente hablando, podremos escuchar mucho mejor a aquellos interlocutores que se encuentren cerca de nosotros que al resto, a los cuales seguiremos oyendo, pero lo que dicen nos resultará indiscernible o incluso lo interpretaremos como ruido. Algo similar sucede con nuestro electrodo, pero él solo “escucha” potenciales eléctricos. Es por ello que, para que un EEG pueda recoger suficiente información, útil para posibles usos clínicos, es absolutamente necesario utilizar un número suficientemente elevado de electrodos en nuestra grabación. Desafortunadamente, un número excesivo de electrodos puede también resultar perjudicial, pues los datos recogidos por cada electrodo afectan a un área no especialmente pequeña, por lo que la resolución espacial del EEG no puede superar cierto umbral. Además, existe la posibilidad de interferencias.
Si queremos utilizar la información recogida por un EE G para realizar cualquier tipo de diagnóstico es absolutament e necesario que hayamos generado previamente un patrón de “normalidad” en humanos “sanos”, contra el cual debemos contrastar los datos obtenidos. Para poder hacer esto, se impone crear una base de datos de pacientes sanos (así como de pacientes con distintas patologías) y esta debe realizarse de forma homogénea. Es decir, debemos disponer del mismo número de electrodos, colocados en idéntica posición, y con idéntico montaje (aunque los electrodos se coloquen igual, hay que definir cierto sistema de referencia que fija la manera en la que tomamos las medidas, pues no medimos el potencial eléctrico tal cual, sino su diferencia respecto de un cierto nodo de referencia que hay que fijar) así como definir un protocolo específico para la toma de datos. Existen numerosos protocolos para la medición de EEG, pero hay uno que destaca sobre los demás debido a que es el más extendido, aquel con el cual se han realizado más bases de datos y el que mejor contrastado está. Es el sistema internacional 10-20 y es el que nosotros usaremos a lo largo de este libro. Se basa en la relación existente entre la localización de un electrodo y la región del cerebro que hay bajo la misma. Los números 10 y 20 hacen referencia a la forma en la que se toman las distancias entre electrodos adyacentes, que son o el 10% o el 20% de la distancia total de delante a atrás (es decir, entre los puntos nasión e inión) o desde la derecha a la izquierda (es decir, entre los puntos preauriculares), en el cráneo.