Martin Gardner - Matemática magia y misterio
Aquí puedes leer online Martin Gardner - Matemática magia y misterio texto completo del libro (historia completa) en español de forma gratuita. Descargue pdf y epub, obtenga significado, portada y reseñas sobre este libro electrónico. Año: 1956, Editor: ePubLibre, Género: Ordenador. Descripción de la obra, (prefacio), así como las revisiones están disponibles. La mejor biblioteca de literatura LitFox.es creado para los amantes de la buena lectura y ofrece una amplia selección de géneros:
Novela romántica
Ciencia ficción
Aventura
Detective
Ciencia
Historia
Hogar y familia
Prosa
Arte
Política
Ordenador
No ficción
Religión
Negocios
Niños
Elija una categoría favorita y encuentre realmente lee libros que valgan la pena. Disfrute de la inmersión en el mundo de la imaginación, sienta las emociones de los personajes o aprenda algo nuevo para usted, haga un descubrimiento fascinante.
- Libro:Matemática magia y misterio
- Autor:
- Editor:ePubLibre
- Genre:
- Año:1956
- Índice:4 / 5
- Favoritos:Añadir a favoritos
- Tu marca:
- 80
- 1
- 2
- 3
- 4
- 5
Matemática magia y misterio: resumen, descripción y anotación
Ofrecemos leer una anotación, descripción, resumen o prefacio (depende de lo que el autor del libro "Matemática magia y misterio" escribió él mismo). Si no ha encontrado la información necesaria sobre el libro — escribe en los comentarios, intentaremos encontrarlo.
Matemática magia y misterio — leer online gratis el libro completo
A continuación se muestra el texto del libro, dividido por páginas. Sistema guardar el lugar de la última página leída, le permite leer cómodamente el libro" Matemática magia y misterio " online de forma gratuita, sin tener que buscar de nuevo cada vez donde lo dejaste. Poner un marcador, y puede ir a la página donde terminó de leer en cualquier momento.
Tamaño de fuente:
Intervalo:
Marcador:
Magia matemática: ingeniosos trucos con cartas, dados, calendarios, fósforos, billetes, monedas, tableros de ajedrez… Y ciencia mágica con los más diversos elementos. Magia y matemáticas, la fusión de dos mundos que da como resultado trucos sorprendentes, paradojas iluminadoras, ejercicios de ingenio, piruetas pedagógicas… Como dice el autor: «la magia matemática combina la belleza de una estructura matemática con el entretenimiento que aporta un truco. No es sorprendente, en consecuencia, que las delicias de la magia matemática sean mayores para quienes disfrutan tanto del ilusionismo como de los entretenimientos matemáticos». La segunda parte del libro está dedicada a la ciencia mágica y reúne una amena colección de trucos, ardides y acertijos sobre temas científicos, que invitan al lector a introducirse de una manera lúdica en los grandes temas científicos.
Martin Gardner
ePub r1.2
koothrapali 30.10.14
Título original: Mathematics, magic and mystery
Martin Gardner, 1956
Traducción: Cecilia Absatz
Diseño de cubierta: koothrapali
Editor digital: koothrapali
Corrección de erratas: romantug, Un_Tal_Lucas
ePub base r1.2
MAGIA CON NÚMEROS
E n este capítulo vamos a considerar trucos que sólo emplean números, además, claro, de lápiz y papel o un pizarrón donde puedan realizarse los cálculos. Esta clase de trucos puede caer en tres categorías generales: cálculos relámpago, predicciones, y efectos de adivinación del pensamiento.
Hay una considerable literatura acerca de la primera de estas categorías. Las pruebas de cálculo mental, sin embargo, se presentan casi siempre como demostraciones de destreza y no como pruebas de magia. No haremos más que revisar los cuatro efectos de cálculo relámpago que cautivaron a los ilusionistas. Son éstos: (1) Nombrar el día de la semana correspondiente a cualquier fecha requerida (discutido brevemente en el Capítulo Cuatro entre los trucos de calendario). (2) La gira del caballo de ajedrez. (3) Construir un cuadrado mágico sobre la base de una suma indicada por el público. (4) El cálculo rápido de raíces cúbicas.
La gira del caballo de ajedrez se discute bastante en la literatura de entretenimientos matemáticos como para que sea necesario dar aquí una explicación pormenorizada. Harry Kelar, un famoso mago estadounidense que prosperó a principios de siglo, solía realizar este truco en sus presentaciones (Junto con demostraciones de extracción de raíces cúbicas), pero son pocos los magos que lo hacen en la actualidad. De un modo similar, los cuadrados mágicos despiertan poco interés en públicos modernos. Si el lector quiere aprender un método simple para construir un cuadrado mágico de cuatro por cuatro que se ajuste a una suma indicada, encontrará una explicación de la prueba en BOOK WITHOUT A NAME, 1931, de Ted Annemann.
Para comenzar la demostración de la raíz cúbica se pide a algunos miembros del público que elijan un número cualquiera del 1 al 100, lo eleven al cubo y digan el resultado. Instantáneamente, el ejecutante da la raíz cúbica de cada número indicado. Para realizar el truco, primero es preciso memorizar los cubos de los números que van del 1 al 10.
1 - 1
2 - 8
3 - 27
4 - 64
5 - 125
6 - 216
7 - 343
8 - 512
9 - 729
10 - 1000
Una inspección de esta tabla revela que cada potencia cúbica termina en un dígito diferente. Este dígito corresponde a la raíz cúbica en todos los casos excepto el 2, 3, 7 y 8. En estos cuatro casos, el dígito final es igual a la diferencia entre 10 y la raíz cúbica.
Veamos cómo se usa esta información para hacer un cálculo relámpago. Supongamos que un espectador anuncia el cubo 250.047. El último número es un 7, con lo cual el ejecutante sabe inmediatamente que el último número de la raíz cúbica tiene que ser 3. El primer número de la raíz cúbica se determina de la siguiente manera. Descarte las tres últimas cifras del cubo (independientemente del tamaño del número) y considere las cifras restantes, que en este ejemplo son 250. En la tabla presentada más arriba, 250 está entre los cubos de 6 y 7. La cifra más baja de las dos —6 en este caso— será la primera cifra de la raíz cúbica. En consecuencia, la respuesta correcta es 63.
Un ejemplo más para que quede claro. Si el número indicado es 19.683, el último dígito, 3, indica que el último dígito de la raíz cúbica es 7. Al descartar los tres últimos dígitos queda 19, que cae entre los cubos de 2 y 3. El número más bajo es en consecuencia llegamos a una raíz cúbica final de 27.
En realidad, un calculador relámpago profesional probablemente memorizaría todos los cubos de los números enteros del 1 al 100, y usaría esta información para calcular cubos más altos. Pero el método recién descrito lo convierte en un truco fácil y efectivo para el aficionado. Curiosamente, hay reglas aún más simples para hallar raíces integrales de potencias mayores que 3. Las raíces quintas’ son especialmente fáciles de hallar porque cualquier número y su quinta potencia tienen el mismo dígito final.
Una prueba de cálculo rápido menos conocida es la de sumar en forma casi instantánea diez números cualesquiera de una serie de Fibonacci (es decir, una serie en la que cada número es igual a la suma de los dos números que lo preceden). Puede presentarse el truco de la siguiente manera. El ejecutante pide a alguien que anote dos números cualesquiera. Supongamos, por ejemplo, que elige 8 y 5. Anota un número debajo del otro, y luego se le indica que los sume para obtener un tercero. Ahora el tercer número se suma al que tiene por encima para obtener un cuarto, y esto continúa hasta que se forma una columna vertical de 10 números.
Mientras se anotan estos números (incluyendo los dos primeros), el ejecutante se mantiene de espaldas. Una vez escritos los diez números, se vuelve, traza una línea bajo la columna y escribe rápidamente la suma de los diez números. Para obtener la suma, sólo observe el cuarto número partiendo desde abajo y multiplíquelo por 11, una operación que se puede realizar mentalmente con facilidad. En este caso el número es 80, en consecuencia la respuesta es 11 veces 80, u 880. El truco fue aportado por Royal V. Heath a The Jinx, N° 91 (1940). (Ver en American Mathematical Monthly, Noviembre de 1947, un artículo de A. L. Epstein en el que discute la prueba como parte de un problema más amplio).
Los trucos de predicción y los de adivinación del pensamiento con números generalmente son intercambiables. Es decir, un truco que puede presentarse como una predicción puede también presentarse como adivinación del pensamiento, y viceversa. Suponga por ejemplo que el ejecutante sabe por anticipado el resultado de un cálculo que el espectador cree que no puede saber. El mago puede dramatizar este conocimiento escribiendo con anticipación el resultado en un papel, en cuyo caso realiza un truco de predicción. O puede simular que lee la mente del espectador una vez que se obtuvo el resultado, en cuyo caso realiza un truco de adivinación. (Como tercera alternativa, puede afectar que obtiene la respuesta por un cálculo relámpago). La mayoría de los trucos que se discutirán en adelante se prestan a este tipo de métodos alternativos de presentación, pero no vamos a desperdiciar palabras en señalarlo continuamente al lector.
Tamaño de fuente:
Intervalo:
Marcador:
Libros similares «Matemática magia y misterio»
Mira libros similares a Matemática magia y misterio. Hemos seleccionado literatura similar en nombre y significado con la esperanza de proporcionar lectores con más opciones para encontrar obras nuevas, interesantes y aún no leídas.
Discusión, reseñas del libro Matemática magia y misterio y solo las opiniones de los lectores. Deja tus comentarios, escribe lo que piensas sobre la obra, su significado o los personajes principales. Especifica exactamente lo que te gustó y lo que no te gustó, y por qué crees que sí.