Magia
Inteligente
Selección y presentación
de Martin Gardner
Colección dirigida por Jaime Poniachik y Daniel Samoilovich.
Título original: Mathematics, magic and mystery
Edición original: 1959, Dover Publications, Inc.
Traducción: Cecilia Absatz
Diseño de tapa: Américo Ruocco
Editor digital original: koothrapali
Esta edición: Sargont (2019)
1989, by Jaime Poniachik, Daniel Samoilovich
1989, by Ediciones Juan Granica S.A. – Barcelona, España
ISBN: 950-641-049-6
Queda hecho el depósito que marca la ley 11.723
Impreso en Argentina – Printed in Argentina
La mayoría de los artículos del Capítulo Seis, y algunos trucos y objetos para magia de otros capítulos, están patentados para su uso comercial, fabricación para la venta o uso promocional en diversos países. Lo mismo sucede con las versiones en español.
INDICE
Prefacio
Como muchos otros temas híbridos, la magia matemática es a menudo despreciada por partida doble. Los matemáticos se inclinan a considerarla un juego trivial, y los magos la descartan por tediosa. Parafraseando un epigrama sobre los biofísicos, puede decirse que quienes practican la magia matemática pueden aburrir a los amigos matemáticos con una charla sobre magia, a sus amigos magos con una charla sobre matemática, y a ambos con una charla sobre política. Todas estas animadversiones tienen algo de fundamento. La magia matemática —admitámoslo— no es el tipo de magia con la que se puede tener fascinado a un público de mentalidad no matemática. Sus trucos demoran demasiado y su efecto dramático es escaso. Tampoco es demasiado probable obtener profundas revelaciones matemáticas por observar trucos de carácter matemático.
Sin embargo la magia matemática, como el ajedrez, tiene su propio y curioso encanto. El ajedrez combina la belleza de una estructura matemática con las delicias recreativas de un juego competitivo. La magia matemática combina la belleza de una estructura matemática con el entretenimiento que aporta un truco. No es sorprendente, en consecuencia, que las delicias de la magia matemática sean mayores para quienes disfrutan tanto del ilusionismo como de los entretenimientos matemáticos.
W. W. Rouse Ball (1851-1925), académico en matemática del Trinity College, Cambridge, y autor del famoso libro Mathematical Recreations and Essays era un individuo de este tipo. Durante toda su vida se interesó activamente en la prestidigitación. Fundó y fue primer presidente del Pentacle Club, una sociedad mágica de la Universidad de Cambridge, que sigue creciendo hasta el día de hoy. Su clásico trabajo de consulta contiene muchos de los primeros ejemplos del ilusionismo matemático.
Que yo sepa, los capítulos que siguen representan el primer intento de examinar el campo completo de la magia matemática moderna. La mayor parte del material se extrajo de la literatura de ilusionismo y de contactos personales con magos aficionados y profesionales, más que de la literatura de entretenimientos matemáticos. Durante los últimos cincuenta años, ha sido el mago, y no el matemático, el más prolífico en la creación de trucos matemáticos. Por esta razón, los estudiantes de matemática recreativa que no están familiarizados con la prestidigitación moderna, posiblemente encuentren aquí un rico y nuevo campo, un campo que posiblemente desconozcan por completo.
Es un campo que está en su infancia. Es un campo en el que se pueden inventar docenas de sorprendentes efectos nuevos antes de que este libro haya estado un año a la venta. Ya que sus principios se pueden captar rápidamente, sin entrenamiento en alta matemática, tal vez usted, lector, pueda en cierta forma participar del rápido crecimiento de este pasatiempo singular y encantador.
Quiero agradecer al profesor Jekuthiel Ginsburg, editor de Scripta Mathematica , por su permiso para reeditar material de cuatro artículos con los que contribuí a su excelente publicación. Paul Curry, Stewart James, Mel Stover y N. T. Gridgeman aportaron generosamente su tiempo y conocimiento en la lectura del manuscrito, corrigiendo errores y ofreciendo valiosas Sugerencias. Otros amigos que me proporcionaron material e información son demasiado numerosos para mencionarlos aquí. Finalmente, tengo con mi esposa una deuda especial por su crítica desinhibida e indispensable, así como por su incansable asistencia en todas las etapas de la preparación de este libro.
Martín Gardner
Nueva York, N. Y., 1955
CAPÍTULO UNO
TRUCOS DE NAIPES - Primera parte
Las cartas de la baraja poseen cinco rasgos básicos que pueden explotarse en la invención de trucos de carácter matemático:
(1) Pueden usarse como unidades para contar, sin referencia a los valores de sus caras, tal como uno podría usar guijarros fósforos, o pedazos de papel.
(3) Están divididas en cuatro palos de dos colores; piques y tréboles son negros, diamantes y corazones rojos.
(4) Cada carta tiene un frente y un dorso.
(5) Su carácter compacto y tamaño uniforme hacen que resulte fácil disponerlas en varios tipos de series y conjuntos, y a la inversa, al barajar se pueden destruir rápidamente los arreglos.
Por esta riqueza de propiedades adecuadas, los trucos matemáticos con naipes indudablemente son tan antiguos como los naipes mismos. A pesar de que ya en el antiguo Egipto se usaban las cartas para jugar, no fue hasta el siglo catorce que pudieron hacerse con papel de hilo, y sólo a principios del siglo quince el juego de naipes se extendió por toda Europa. No se registraron trucos de cartas hasta el siglo diecisiete, ni aparecieron libros enteramente dedicados a la magia con naipes hasta el siglo diecinueve. Hasta ahora, que yo sepa, no se ha escrito un libro que trate exclusivamente de trucos de naipes basados en principios matemáticos.
La primera discusión acerca de la magia con naipes planteada por un matemático parece ser la de Problèmes Plaisans et Délectables , de Claud Gaspard Bachet, un trabajo de recreación en Francia en 1612. Desde entonces han aparecido referencias a trucos de naipes en muchos libros de entretenimientos matemáticos.
Las Curiosidades de Peirce
El primero, y quizás el único filósofo eminente que se interesó en una cuestión tan trivial como la magia con naipes fue el lógico estadounidense y padre del pragmatismo Charles Peirce. En uno de sus escritos (ver The Collected Papers of Charles Sanders Peirce , 1931, Vol. 4, p. 473) confiesa que en 1860 elaboró un número inusual de efectos con naipes sobre la base de lo que él llama «aritmética cíclica». Describe en detalle dos de estos trucos bajo los títulos de «Primera Curiosidad» y «Segunda Curiosidad». Para un mago moderno, estos trucos son «curiosidades» en un sentido diferente al que Peirce daba al término.
La «Primera Curiosidad», basada sobre uno de los teoremas de Fermat, requiere trece páginas sólo para describir cómo se realiza ¡y otras cincuenta y dos páginas para explicar por qué funciona! A pesar de que Peirce afirma que realiza este truco «con el uniforme resultado de interesar y sorprender a todos los presentes», la culminación es tan débil comparada con la complejidad de su preparación, que es difícil creer que el público de Peirce no estuviera medio dormido antes de que el truco terminara.
Hacia el final del siglo la magia con naipes experimentó un crecimiento sin precedentes. En su mayor parte estaba vinculado con la invención de «pases» (maneras de manipular secretamente los naipes), pero en este desarrollo aparecieron también cientos de trucos nuevos que para su operación dependían total o parcialmente de principios matemáticos. Desde 1900 la magia con naipes avanzó en forma firme, y en la actualidad hay innumerables trucos matemáticos que no sólo son ingeniosos sino también sumamente entretenidos.